光速是宇宙的速度极限,如果光速无限大,万物将不复存在!

2024-11-21 11:47:51宇宙时空

为何光速独享殊荣?为何宇宙似乎刻意束缚光子,仅使其在空无一物的宇宙间以每秒三十万公里的速率游走?这一速度对于任一位旁观者来说皆是雷打不动的定数,而奇妙的是,它也恰恰是一切速度无法逾越的天堑?(举例而言,你以每秒五米的步速跑步,站在静止的旁观者看来,你所散发的光仍旧是每秒三十万公里的光速,而非叠加上你的跑步速度。)

然而,若非如此描述,宇宙实则并不刻意将光速设为常数,时空对光子的舞步并不关心,事实上,宇宙中速度的限制背后,隐含着更深的奥秘,这一所谓的常数(光速),更确切地说,它代表着因果关系的传递速度。

所有观测者都能达成共识的因果事件顺序,为何因果的传递设有最高速度限制?又为何这一速度的数值恰好与光速吻合?

在继续探讨之前,让我们先回顾物理史上的两项重要发现。回溯至1632年的伽利略时代,他在著作中不仅支持了哥白尼的日心说,还在书中阐述了他的“相对性原理”,尽管这一原理并非如爱因斯坦的相对论那般广为人知,却是相对论的前奏。

伽利略不仅宣称地球与宇宙中的任何其他地方一样并非特别,同样他也认为没有任何速度是特别的。也就是说,任何实验的结果不会因为实验者处在不同速度的参考系中而改变。伽利略的这一相对性原理,不仅是一项了不起的创见,不久后亦被牛顿纳入其运动定律之中。

再者,19世纪的一项实验揭示了电磁之谜。科学巨匠麦克斯韦用他编制的方程式,精妙地描绘了所有电磁现象。

至19世纪末,物理界已掌握了牛顿力学、麦克斯韦方程以及其他诸多辉煌的理论,似乎物理学的大厦已然完工。

然而,在后续的计算中,却出现了令人不安的异样,其中两点尤为突出。

第一点,它揭示了自然界奇异的量子特性,似乎麦克斯韦方程与伽利略的相对性原理并不相容。如今我们明了,牛顿力学实际上也隐含着光速无穷大的假设,这引起了大问题,因为这意味着时空甚至物质都不复存在。

试想一匹穿着溜冰鞋的小马,背上搭载着一只驾着滑板的猴子。假设这猴子带有电,那么在溜冰小马上的猴子与滑板自然会产生磁场。我们用麦克斯韦方程计算磁场强度时,会将观测者(此处指小马)的速度考虑在内。

但问题的关键在于,这个速度究竟是多少?伽利略和牛顿的理论认为,猴子速度应为小马溜冰速度与猴子滑板速度之和。但若小马本身也同样能进行上述计算,它会认为猴子移动的速度仅为滑板速度,由此得出的磁场强度自然与之前的计算大相径庭。

那么我们和小马,究竟谁是对的?

关键在于我们实际上在测量什么。我们并非直接测量磁场,而是它所引起的效应,亦即我们测量的是力。小马与我们所测得的力是一致的,电场与磁场之间存在一种与速度相关的转换,两者共同作用,确保不同坐标系中的电磁力——洛伦兹力保持一致。

电磁作用的线索引领我们探寻时空与速度的关系,我们如何解开这些连接?答案在于某种转换过程,这种过程能使麦克斯韦方程在不同坐标系之间无缝转换,这才是真实世界所应呈现的景象。这种转换过程宛如某种数学魔法,指向你的时空视角或物理法则,便能转换至另一个坐标系。

伽利略变换便是其中一例,其基本观点在于速度可以相加,而时间空间与速度无关,这一观点被牛顿力学采纳。同样,我们也用它来计算猴子的速度。但若麦克斯韦方程在伽利略变换下无法得出一致的结果,则表明变换并未保持不变。

在低速状态下,通过这种变换计算出的力基本正确,但在高速状态下则大相径庭。那么,是麦克斯韦错了吗?

并非如此,这意味着伽利略变换是错误的,支持牛顿力学的变换方法也不正确。可行的变换方法被称为洛伦兹变换(此处不作详解,读者可自行搜索了解),它比爱因斯坦的相对论更早提出,但爱因斯坦揭示了这种变换代表了时间与空间的联系,并预示了因果传递的速度极限。我们可以跟随爱因斯坦和洛伦兹的脚步,用光速恒定来推导这一变换。

首先,让我们假设我们不知道速度可以相加,不知道猴子速度是否等于小马溜冰速度加上猴子滑板速度。其次,没有哪一个坐标系更为优越,在我们的变换法则下,物理法则与坐标系的位置、方向、速度无关。无论小马位于何处,无论它如何快速移动,这都无关紧要。事实上,地球围绕太阳转,太阳又围绕银河系转,位置、方向、速度持续变化,但我们的实验并未受此影响。

接着,我们假设宇宙是一个合乎逻辑的地方,这意味着我们可以在不同的坐标系间自由转换。运用同一变换,我们应能自由穿梭于小马和猴子的坐标系之间,只需代入不同的速度即可。例如,我们可能先去小马的坐标系,然后转换至猴子的坐标系。我们所要求的,不过是基本的一致性。

最后,运用上述公理和一些代数运算,我们得到的结果便是洛伦兹变换,唯有它能满足上述要求,满足宇宙的相对性和对称性,也必定能描述真实宇宙。因此,宇宙的速度限制是必然存在的。

这个绝对速度限制(简称为C)是定义洛伦兹变换的唯一参数。通过这个参数,洛伦兹变换预言了宇宙速度限制的存在。而伽利略变换实际上是洛伦兹变换的一个特例,即C等于无限大的情况。

然而,考虑到我们之前提到的相对性和对称性,C的确有可能等于无限大,但基于一些与光无关的原因,我们知道它不可能是无限大!

洛伦兹变换允许麦克斯韦方程在变换后保持不变,用它便能得出一条普适的电磁学法则,适用于所有坐标系,这也进一步印证了洛伦兹变换是现实的准确描述。但要使C成为特定值才行,这个值必须由麦克斯韦方程中的基本常数组成。如果要让电磁理论成立,宇宙的速度限制就必须是一个有限值,哪怕不考虑光速也是如此。

然而,神奇的是,计算出的宇宙速度限制常数组合,恰好描述了电磁波传递的速度,也就是光速。C的确等于光速,但它最初是因果传递速度的代表,它代表了宇宙中两点间传递信息的速度上限,严格来说,是任何观测者观测到的两点间传递信息的速度上限,因此它也是任何无质量粒子的最高速度!

因此,光——光子、引力波、胶子——它们质量为零,故以最高速度运动。质量实际上是运动的阻碍,没有质量便无阻碍,因此无质量的粒子会以最高速度运动。而质量本身和时空的存在告诉我们,宇宙速度限制是一个有限值。

爱因斯坦对洛伦兹变换的解读,诞生了狭义相对论,它告诉我们时间膨胀、长度收缩,还有质能等价(E=MC平方)等现象。

若宇宙速度限制不存在,即C等于无限大会怎样?物质将不复存在,因为需要无限多的能量来创造质量,只有无质量粒子以无限速度运动,时间膨胀和长度收缩效应爆炸成无限大,时空本身不复存在,因果也不存在,因为所有地方都能及时互相沟通,整个宇宙只剩此地与此刻。

因此,这样的世界观本身充满矛盾,这个悖论也表明无限速度限制是不可能的。因果传递的有限速度是宇宙存在的基本条件。

猜你喜欢:

网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图网站地图